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Phase Transitions in an Exactly Soluble 
One-Dimensional Exclusion Process 
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We consider an exclusion process with particles injected with rate ~ at the origin 
and removed with rate/~ at the right boundary of a one-dimensional chain of 
sites. The particles are allowed to hop onto unoccupied sites, to the right only. 
For the special case of c~ =/~ = 1 the model was solved previously by Derrida 
et al. Here we extend the solution to general c~,/L The phase diagram obtained 
from our exact solution differs from the one predicted by the mean-field 
approximation. 

KEY WORDS: Asymmetric exclusion process; steady state; boundary- 
induced phase transitions. 

1. I N T R O D U C T I O N  

One-dimensional asymmetric exclusion models (1) are of interest for various 
reasons. They are closely related to vertex models, ~2) growth models, (3) 
and, in the continuum limit, the KPZ equation (4) and the noisy Burgers's 
equation. 

Various types of phase transitions occur as a consequence of the inter- 
play of particle transport with a localized defect or inhomogeneity. Suitably 
chosen boundary conditions can represent the effect of such a defect in an 
otherwise homogeneous system. Such transitions have been the focus of 
many recent studies. (1'5-9) Some of these models could be solved exactly 
and allow for a detailed study of their steady-state properties, such as the 
density profile or density correlations. (1'7-9) 

Totally asymmetric simple-exclusion models with nearest neighbor 
hopping can be divided into four classes according to the dynamics 
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(sequential or parallel) and the choice of boundary conditions (open or 
periodic). In all these models each lattice site i in a chain of N sites is either 
occupied by a single particle (re= 1) or empty (~;=0)  and a particle can 
hop to the neighboring site in one direction if this site is empty. 3 By con- 
vention, we choose the direction of hopping as to the right. The dynamics 
can be chosen either sequential (l's'6's) or parallel. (2'7'9) In the case of 
sequential dynamics, which we study in this paper, particles jump inde- 
pendently and randomly in each time step according to the following rules: 
At each time step t --* t + 1 one chooses at random one pair of sites (i, i + 1 ) 
with 1 ~< i ~< N -  1. If there is a particle on site i and site i + 1 is empty, then 
the particle will jump from i to i +  1. All other configurations do not 
change, i.e., 

z i ( t +  1 ) = r i ( t  ) ~i+1(0 

"Ci+l(t + 1 ) = r i + l ( t )  + [1 - 'C i+ l ( t ) ]  ri(t) 
(1.1) 

In the case of parallel updating the lattice is divided into neighboring pairs 
of sites and some stochastic hopping rules are applied in parallel to each 
pair in a first half time step. In the second half time step the pairs are 
shifted by one lattice unit and the same rules are applied again. (2"7'9) Both 
models can be defined with either periodic or open boundary conditions. 
When periodic boundary conditions are used, a nontrivial phase diagram 
can be observed by introducing, for example, a single defect. (6'7) With open 
boundary conditions particles are injected with rate c~ at the left boundary 
(which we shall call the origin) and absorbed with rate fl at the right 
boundary. 0'5'8'9) Injection and absorption are implemented in the following 
way: when one considers the pair (0, 1), where site 0 represents the origin, 
then the occupation number r~( t+ 1) of site 1 at time t +  1 is given by 

Zl( t+  1 )=  1 

z l ( t +  1 ) = 0  

with probability "~l(t) + c~[1 - zl( t )]  

with probability (1 - 0~)[1 - zl( t )]  
(1.2) 

On the other hand, 
represents the (right) 
after one time step is 

considering the pair (N, N +  1), where site N + I  
boundary, the occupation number r:N(t Jr 1) at site N 

7;N(t q- 1 ) 

~N(t-F 1) 

= 1 with probability (1 - fl) 7:N(t ) 
(1.3) 

= 0 with probability 1 - ( 1 - fl) ~ N (t) 

3 A model with two different kinds of particles and nearest neighbor hopping has been studied 
in ref. 10, and a simple-exclusion model where particles can hop over several lattice sites in 
each time step is discussed in ref. 11. 
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The model defined by Eqs. (1.1)-(1.3) can be viewed as a homogeneous 
system connected to a reservoir of fixed particle density ~ at the origin and 
fixed density 1 - / ~  at the boundary. 

The model with parallel dynamics and periodic boundary conditions 
with a defect ~7) was solved by the Bethe ansatz. Recently some steady-state 
properties of the model with parallel dynamics and open boundary condi- 
tions were also found. (9) The Bethe ansatz was used also to solve the model 
with sequential updating (1.1) and translationally invariant periodic 
boundary conditions without defectJ 12/ The case of sequential dynamics 
with open boundary conditions was studied by Krug ~5) and by Derrida 
et  aL (~) 

Krug studied numerically the steady-state behavior of this model on 
the line /~= 1 (Fig. 1). He found, at ~ = 1/2, a phase transition and an 
associated diverging length scaleJ 5) For  ~ < 1/2 he found an exponential 
decay of the profile to its bulk value with increasing distance r from the 
boundary, while for ~ >  1/2 the profile decayed as r -1/2. Derrida e t a L  ~) 

expressed the exact steady state and the steady-state density distribution 
for arbitrary ~ and /~ in terms of recursion relations [Eqs. (2.9)-(2.11) 
below]. These recursions were solved explicitly only for ~ =/~ = 1. For  this 

r 1/2 

A 

C 

I B 

1/2 1 

Fig. 1. Mean-field phase diagram of the model in the e-fl plane as obtained in ref. 1. Region 
A is the low-density phase, region B the high-density phase, and region C the maximal current 
phase. The phases are separated by the curves a =fl< 1/2; ~ = 1/2, fl> 1/2; and fl= 1/2, 

> 1/2, respectively. The sign of the slope of the density profile (as shown in the insets) 
changes when the line e = 1 - f l  is crossed. Note that this is not a phase transition line. 
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case they showed that the density profile approaches algebraically its bulk 
value Pbu~k = 1/2 with increasing distance x from the origin, p - 1/2 ~ x-1/2. 
The same behavior characterizes the approach of Pbulk from below as r 1/2, 
with increasing distance r from the boundary, confirming the numerical 
result of Krug. 

The phase diagram in the whole ~-fl plane was obtained in ref. 1 by 
a mean-f ie ld  calculation. Three phases were identified (Fig. 1). In a low- 
density phase A, found for e </3 and e < 1/2, the density profile approaches 
Pbulk = ~  exponentially with r. This supports Krug's observation of an 
exponential behavior for/~ = 1, e < 1/2. A high-density phase B was found 
for c~ > fl and fl < i/2, which is related to the low-density phase by a 
particle-hole symmetry. Here the profile approaches Pbuik = 1 --/ /exponen- 
tially with x, the distance from the origin. Finally, for c~,//> 1/2 the system 
is in the maximal current phase C. In this phase mean field predicts a 
power law for the profile, with exponent x = 1, whereas the exact result (1) 
yields ~: = 1/2. 

Here we present the exact solution to the recursion relations giving the 
steady state and the density profile for arbitrary values for ~ and /L We 
show that the phase diagram has a richer structure than that predicted by 
mean field. In particular, we show that there is a phase transition with an 
associated diverging length scale along the two lines, e = 1/2 and fl = 1/2, 
dividing both the low-density phase and the high-density phase found in 
the mean-field calculation into two different phases. In the low-density 
phase AI defined by e </~ < 1/2 the profile is exponential, as predicted by 
the mean-field calculation. The situation is different, however, in the 
low-density phase An defined by c~< 1/2 and f l>  1/2; there the profile 
approaches Pbulk = tX as r 3/2 exp(--r / i )  for r >> 1. This was expected neither 
from the mean-field approach nor from the numerical results of Krug. 

The paper is organized as follows. In Section 2 we present the recur- 
sion relations obtained in ref. 1 and give an exact solution for arbitrary 
and ft. In Section 3 we draw some conclusions from these results and derive 
the exact phase diagram. Then we study the density profile in the various 
phases for large systems (Section 4) and in Section 5 we discuss in detail 
the various phase transitions that were identified. 

2. EXACT SOLUTION OF THE RECURSION RELATIONS 

The steady state of the model defined in Eqs. (1)-(3) is given in terms 
of the quantities PN(~I ,  T z,..., r U), which are the probabilities of finding the 
specific configuration of particles represented by the occupation numbers 
(zl, ~2 ..... TN) on the chain with N sites. It turns out to be more convenient 
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to work with unnormalized probabilities f u ( r l , ~  2 ..... "~N) related to 
P N ( ' C l ,  "C2,... , 72N) by 

P N ( ' C l ,  72 2 ..... T.N) ~- f N ( ~ l ,  72 2 ..... "CN)/Z N (2.1) 

where 

Z N =  ~ "'" ~ fN(r l ,  rZ,..., rN) (2.2) 
1:1 = 0 , ] [  Z N =  0,1 

As shown in ref. 1, all t h e f x ( r l ,  ~2,'", "ON) can be obtained recursively from 
the corresponding quantities in a system with N -  1 sites [Eqs. (8) and (9) 
of ref. 1 ]. Here we are interested only in the average occupation number 
( ' ~ i ) U  of site i in a system of length N, given by 

( ~ i )  = TN, i / Z N  ( 2 . 3 )  

with 

TN, i= ~ "'" ~ ~ifN(ri,  r2 ..... *N) (2.4) 
~'1 = O, 1 z N = O ,  1 

The normalization Z N and the unnormalized particle density TN, i can 
be computed from the quantities 

YN, K = ~ "'" ~ (1 - -~N)(1- -*N 1)'''(1--VK)fN(vl, V2 ..... VN) (2.5) 
Zl = 0 , 1  "ON = O, 1 

and 

X p - ~ ~ (1 - - ru )  (1--V/~)rpfu(~l,~2 ..... ~N) (2.6) N, K . . . . . . .  
Zl = 0 ,  I Z N ~ 0 , 1  

by defining 

YN, N+ 1 = Z N  (2.7) 

and 

X p = TN (2.8) N ,N +I  ,p 

[Note that we made a slight change in notation as compared to ref. 1. 
There the quantities YN, K w e r e  denoted YN(K)  and the quantities X p N, K 

were denoted XN(K, p).] 
The reason for the introduction of YN, K for I ~< K~< N +  1 and X p for N, K 
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p +  1 <~ K < ~ N +  1 is that they can be obtained from the following closed 
recursions(1): 

YN, I = f l Y N -  I,1 

YN.K = YN,  K-- I "4- o t f lY  N _  1,i( 

YN,  N + I  = YN,  N + O t Y N - 1 , N  

with the initial condition 

for 2<~K<~N (2.9) 

YI,1 : f l  
(2.10) 

Y1,2=~+fl  

These recursions can be simplified somewhat by extending the range of 
definition of K to I~<K~<N+2.  If we set K = N + I  in the second of 
Eqs. (2.9), the resulting equation is precisely the third of (2.9), provided we 
use the extended definition Y N -  1,N+ 1 = fl 1 y N _  X,N for fl r 0. Similarly, 
Eqs. (2.10) become a consequence of (2.9) by redefining the initial condi- 
tion as Yo,~ = 1. These extensions of the definitions of the quantities YN, X 
are useful in some of the calculations presented below. 

Once the YN, K a r e  determined, the X p can be obtained from the N, K 
recursion relations o) 

X P ,  K ~-- • p  N,K-- 1 -~- 0 ~  X p  -- 1, K 

P = X~N N + ~ X w  X N ,  N+ 1 , 1,N 

with the initial condition 

for p + 2 <~ K <<, N 
(2.11) 

for l <~ p <~ N - 1  

X p =O~flYN_l,p+ 1 for 1 <~p<~N (2.12) N,p+ l 

where we used the extended definitions Yo, m and YN, N+2 of the Yu, x. 
Solving these recursion relations gives the exact average occupation 
numbers <zi) through Eqs. (2.3), (2.7), and (2.8). This was done in ref. 1 
for a = fl = 1. Here we present the solution for arbitrary a and ft. 

For a solution of these recursion relations and initial conditions define 
the functions G~,K(x ) by 

M 1 
G~K(X)= Z bN,~(r) xr (N~>I) (2.13) 

r=0 

with 

(2.14) 
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For later convenience also define b0,1(0) = Golo = G10,1 = 1. As a result of the 
symmetries of the coefficients bu, K(r ) these functions satisfy various 
relations given in the Appendix. In particular, from the recursion relations 
(A.3) and the special values (A.4) one can show that the quantity 

K 2 
YN, K(e, fl)=flNGNK(a) ~. ~N--,flN K+I+XGN, N(~ (2.15) 

s = 0  

solves the recursion relations (2.9) with the initial conditions (2.10). 
Relations (2.11) with initial condition (2.12) are satisfied by 

N--p 
XP, K(O~, j~)~- ~ bN-p,K-p(r) o~r+lflr+lyN-r l , p+ l (8{ ,  1~) 

r = 0  
K--p--2 

+fiN--K+2 ~ ~N+l p--,'~K--p ,-rtR,  y p ,+,.p+l(O~,fl) ~N--p,N--p~'! 
r=O 

(2.16) 

Using the first of equations (A.4), one obtains from this 

N 
Rso~N-sGs+ l(O~ ~ (2.17) ZN~-YN, N+I ~- ~'~ ~" N.N ! 

s=0 

and after some computation, involving relabeling of indices, we get 

N--p 
TN, =Xfv, " " + '  O{ GN_p.N_,(~) YN_s_l,p+l(Og, fl) ( 2 . 1 8 )  

s~O 

This expression is exact for any N~> 1, 1 ~ p ~< N. Substitution in (2.3) gives 
the exact density profile for arbitrary e and ft. 

Equations (2.17) and (2.18) provide also an exact expression for the 
conserved current j =  (v i ) - (7~ i 'E i+ l )=cons t ,  and consequently for the 
correlation function (~ir~+l).  To see this, note that taking i=N,  one 
obtains ( r N r N + I ) =  (1--fl)(VN), since site N +  1 represents the reservoir 
of constant density 1 - f t .  Therefore one has (1) 

J=f l (gN)  (2.19) 

On the other hand, taking i = 0, one gets (Zor l )  = c~(~1 ), since site 0 is the 
reservoir of constant density c~. Thus we also have (1) 

j =  ~(1 - (~1))  (2.20) 

Since, however, our exact result yields (z~) for any i, we can calculate the 
exact current j, and hence (~v~+ 1). 
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3. DISCUSSION OF THE DENSITY PROFILE 

In order to analyze the density, it is convenient to study the quantity 

tN(p) = ( r N ,  p+ I --  TN, p)/Z N (3.1) 

which becomes the spatial derivative of the density profile in the continuum 
limit. It turns out to be given by (p # N) 

tN(p) = (1 --  O~--fl) [~ pGN_p,N_p(~)N-p o~N-pGPp(~)/ZN, (3.2) 

which for a # 1 - fl can be more conveniently written in the form 

tN (p) = Fp(~) FN_ p(fl)/ZN (3.3) 

with 

and 

F N ( X  ) N--1 N ~- X GN, N(X  ) (3.4) 

Z N  
2 N -  (1 - ~ -  #) ~N+ ~#N+, 

FN(fl)--FN(a) 
~(1- ~)-/~(I-/~)' ~#/~, I-~ 

= F~v(fl) (3.5) 

1-2f l '  ~=fl#~ 
where the prime denotes the derivative with respect to ft. The last of the 
two equations (3.5) can be obtained by changing the order of summation 
in (2.17). 

For  ~ =  t - f l  one obtains directly from (3.2) that tN(p)=O, i.e., the 
profile is constant on this curve. This result was already obtained in ref. 1. 
From (3.3) we learn that up to the amplitude 2,  the derivative t(p) of the 
density profile can be written as a product of two functions; one of ~ and 
the other of fl: tN(p) W_ Fp(~) Fu-p(fl). 

This fact has important and surprising consequences. It clearly implies 
that phase transitions (i.e., nonanalytic changes in the p dependence of the 
density profile) can occur on two kinds of lines: ~ = ~c and any fl, or fl = tic 
and any ~. Hence if a phase transition is predicted to occur on the fl > 1/2 
segment of the line a = 1/2 (the mean-field transition to the maximal 
current phase), then the transition must extend to the fl < 1/2 regime as 
well! This means that instead of a single high-density phase B predicted by 
mean field there are in fact two such phases. Indeed, analysis of the func- 
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1/2 

AII 

A I  BII 

0 1/2 1 

Fig. 2. Exact phase diagram of the model in the c~-fl plane. The low (high) density phase 
shown in Fig. 1 is divided into two phases, A I and A n (B I and Bn) along the curve fl = 1/2 
(c~ = 1/2). 

tion Fp(x), presented below, reveals that its dependence on p changes at 
x = 1/2. Similar considerations hold for the line fl = 1/2 and e < 1/2, which 
separates the low-density phase A into two distinct phases (Fig. 2). These 
new transitions were not found by the mean-field calculation. 

Another unexpected consequence of the separability into a product is 
the existence of two independent length scales in the model, one determined 
by the injection rate c~, the other one by the absorption rate ft. This is 
surprising, as one might believe that only th e larger of these two quantities 
determines the behavior of the system. In fact, as long as the system is 
not in the maximal current phase, this indeed is the case as far as the 
current j =  ( z i ) -  (zizg+l) is concerned: In the continuum limit one has 
j = f l ( 1 - f l )  for e > f l  and f l<  1/2, and j = e ( 1 - c  0 for fl>c~ and c~< 1/2 
(whereas j =  l/4 if both e and fl are larger than 1/2). Since in the mean-field 
calculation the shape of the density profile is determined by only the 
current, phase transitions are seen neither at ~ = 1/2 and fl < 1/2, not at 
fl = 1/2 and e < 1/2. Prior to presenting an explanation for the unexpected 
existence of the additional phases and phase transitions, we study the 
density profile in the thermodynamic limit N ~ oo. 
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4. D E N S I T Y  PROFILE IN THE L A R G E - N  L IMIT  

We want to discuss the density profile of a large system (N >> 1) as a 
function of the space coordinate p at large distances from both ends, i.e., 
we consider p >> 1 and r = N -  p >> 1. So we need an asymptotic expression 
for FL(x ) for large L. Splitting FL(x) into two pieces F L(1)(x) and F(2)ta']L ~ ,  as 
in Eq. (A.11) allows for an expansion in 1/L. For x <  1/2 the dominating 
contribution is F(c ~), since --LP(z)/P(1)~--L oC exp(--aL)  with some constant a: 

1 -- 2x 1 
FL(x) = Ix(1 - -x ) ]  r+ l  [1 + O(e-aL)], X<-~ (4.1) 

If x > 1/2, then F ~  ) = 0 and up to order 1/L 

FL(x) = (1 eL _ 2 x )  2 [1 + O(L-~) ]  

4 L 1 
[ 1 +  O(L-~)] ,  x > -  (4.2) 

(1 - 2x)  2 ~ L 3/2 2 

This expression diverges for x -+ 1/2. For x = 1/2 one obtains [see (A.14)] 

4 L 
FL(x) = 2 ~ [1 + O(L-1) ]  (4.3) 

Using the expansions (4.1)-(4.3) and the expression (3.5) for the 
normalization ZN, one can compute the shape of the density profile given 
by tN(p). We define a length scale r by 

~$-i = - log[4~(1  - a)]  (4.4) 

As a reaches 1/2, r diverges. For the various phases AI-C (Fig. 2) one 
finds in the large-N limit (such that 1 ~ p, 1 ,~ N -  p, i.e., p is far from both 
ends of the system) the following results. 

4 . 1 .  H i g h - D e n s i t y  P h a s e  B I 

This phase is defined by the region fl < e < 1/2. From the expansion 
(4.1) one finds an exponential decay of the density profile with length scale 

( 4'B(1 -- 'B)']{4'B(1 - 'B)] p 
tN(p)=(1--2~) 1--4~(1 ~)J \4~(1  ~)J 

( 4 f l (1 -  ~ I ) e  p/r 
= ( 1 -  2c0 1 - 4e(I (4.5) 
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The density approaches its bulk value Pbulk = 1 -  fl from below. One has 
j = f l ( 1 - / / )  and from (2.20), ( r l ) =  1 - / / ( 1 - / / ) / e  < 1 - / / =  (rN). 

4.2. Transition Line from High-Density Phase B~ 
to High-Density Phase B.  

On approaching c~ = 1/2 from below in the region/3 < 1/2, we find that 
~ diverges but ~ remains finite. For c~ = 1/2 the slope of the profile is of 
the form 

tu(p) ~ p-Z~e-P/~ (4.6) 

The values of the length scale ~ and the exponent z~ can be read off the 
exact expression (4.3), which for large N becomes 

(1 - 2/ / )  2 [4 / / (1  - / / ) ] P  
tN(p)- 2,/~ p,/2 

(1 --2//) 2 
= 2 ~ P 1/2e-p/r (4.7) 

The current and the boundary values are given by the same expressions as 
in the high-density phase I. 

4.3. High-Density Phase B.  

On crossing the phase transition line into the high-density phase B H 
defined by ~ > 1/2 a n d / / <  1/2, the decay exponent changes to z~ = 3/2 [see 
Eq. (4.2)] and one obtains 

(1 -~ - / / ) (~ - / / )  [4//(1-//)]P 
I N ( p )  -- 

(1 -- 2C~) 2 , f ~  p3/2 

(1 - c~ - / ~ ) ( ~  - / / )  - 3/2 - , , /e~ (4.8) 

The current and the boundary values are given by the same expressions as 
in the high density phase I, but note that the slope of the profile changes 
sign on the curve ~= 1- / / .  Along this curve the density is constant, 
(Z' i)  =lObulk = I - - / /  for 1 <~i<~N. For c~> 1 - / / t h e  slope is negative. 

822/72/1-2-19 
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4.4. Transit ion f rom High-Densi ty  Phase B, I 
to the Max imal  Current  Phase C 

When/? reaches the critical value 1/2 in the region ~ > 1/2 and/? ~< 1/2, 
then also ~ diverges and the slope of the profile is given by 

tN(p) = 4 X//-~ 1 -- p--3/2 (4.9) 

Near the origin (1 ~ p ~ N) we can neglect the piece with piN in (4.9), so 
the slope is dominated by p-Z~ with z~= 3/2. In the boundary region 
(p = N -  r, 1 ~ r ~ N) the shape of the profile is determined by r - ~  with 
zp = 1/2, but the amplitude of tN(r ) is only of order 1IN. Therefore, up to 
corrections of order l/N, the profile near the boundary is flat, whereas it 
decays as p-1/2 with the distance p from the origin to its bulk value 
Pbulk = 1/2. The current reaches its maximal value j =  1/4 and one finds 
( ' ~ N )  "~- P b u l k  = 1/2 and ( ~ 1 )  = 1 - 1/(4~). 

4.5, Max imal  Current  Phase 

If/? > 1/2 and ~ > 1/2, the derivative tN(p) depends neither on ~ nor 
on/?. Near the origin and near N the slope of the profile is determined by 
z= = z~ = 3/2: 

1( 
tN(p)= 4 ~  1-- p-3/2 (4.10) 

Therefore the density approaches its bulk value Pbu~k ---- 1/2 as p -  1/2 with the 
distance p from the origin from above and as r 1/2 with the distance 
r = N - p  from the boundary from below. The current takes its maximal 
value J ' m a x  = 1/4 throughout the phase and one obtains ( ~ u )  = 1/(4/?) and 
( v l )  = 1 - 1/(4c 0. 

4.6. Low-Dens i ty  Phase A, 

This phase is defined by ~ </? < 1/2 and is related to the high-density 
phase B~ by a particle-hole symmetry and therefore the decay is exponential. 
One finds 

( 4c~(1-~) '](4~(1-c~)~ u p 
tu(p) = (1-- 2/?) 1 4/?(1 /?)/\4/?(1 /?)2 

( 4~(1-;)))e r/~ 
=(1--2/?)  1--4/?( 1 (4.11) 



1 D Exclusion Process 289 

with a length scale 4 - 1 = ~ - ~ - 1  and r = N - p ~ > l .  The density 
approaches its bulk value Pbulk = ~ from above. The current is given by 
j = ~ ( 1 - ~ )  and therefore, according to (2.19), ~'~'N)=0~(1--~)/J~>~= ~71 ~. 

4.7. L o w - D e n s i t y  Phase A,~ 

The profile in this regime (/~> 1/2, ~ <  1/2) is obtained from (4.8) by 
exchanging ~ and/~ and substituting p by r -- N -  p. This is a result of the 
particle-hole symmetry of the model. In the same way one obtains the 
profile on the phase transition lines from A~ to An and from AH to C out 
of the profiles on the phase transition lines from B~ to Bn and B n to C, 
respectively. 

4.8. Coex is tence  Line 

If ~ =/~ < 1/2, both ~ and ~ are finite, but since ~ = ~ ,  one gets 
- 1 =  0. As a result one finds a linear profile with a positive slope 

iN(p)  = (1 -- 2~) /N (4.12) 

The current is given by j = ~ ( ! - ~ )  and one has { v l ) = ~  and { z N ) =  

5. D I S C U S S I O N  OF T H E  P H A S E  D I A G R A M  

We turn now to discuss the various phases and the transitions between 
them on a more physical, intuitive basis. First we consider the case/~ = 1. 
This situation corresponds to connecting the system to a reservoir of fixed 
density Po = ~ at the origin, and another "reservoir" with PN+1 = 1 -- f l  = 0 
at the boundary. We will consider the limit N-~ ~ ,  and ask what are the 
possible steady-state density profiles that the system can have, and which 
interpolate between the two limiting values Po and ,ON+ 1" 

Let us start with ~ < 1/2, and try a density profile (a) that approaches 
(for 1 ~ x ~  N) a constant bulk value p < ~, before it decays to p N + l =  O. 

We now show that such a profile cannot be a steady state. To see this, note 
that in a bulk region with constant density there are no correlations (the 
steady state factorizes into a product measure) and therefore the current in 
the bulk is given by j =  p ( 1 - p ) ;  whereas at the origin it is J0 = ~ ( 1 -  Pl), 
where Pl, the density at x - -  1, satisfies 1/2 > ~ >~ Pl/> P- If we can show that 
Jo >J,  particles accumulate between the origin and the bulk, and hence 
the density is not stationary. Clearly, for p l = p  we have j o = ~ ( 1 - p ) >  
p ( 1 - p ) = j ,  since ~ > p .  On the other hand, for p l = ~  we have j o =  
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e(1 -- ~) > p(1 -- p) = j for 1/2 > e > p. Hence Jo > J at the two endpoints  of 
the interval  [p,  e ]  to which Pl is limited; and since Jo is a linear function 
of p l ,  we mus t  have Jo > J for the entire interval. 

A different possible steady state profile (b) is one with e < p < 1/2. 
Here  we can show that  j o = e ( 1 - ~ ) < p ( 1 - p ) = j :  Under  the present  
assumpt ions  the density first interpolates between ~ and p, and hence 

< Pl < P, and, as before, the relat ionship we wish to prove  holds at bo th  
endpoints  of  this interval. If  this holds, however,  more  particles leave the 
bulk than  enter  it, and  p mus t  decrease. Thus  also (b) cannot  be a s teady 
state. 

The  last possibili ty of the kind considered, (c), has p > 1/2 > e; we will 
re turn to this case later and show that  for the presently used values of 

and /~ it cannot  be a s teady-state profile either. The  only remaining 
si tuat ion is the one in which p = ~. Then, obviously,  J0 = ~(1 - a) = j. Hence 
the bulk steady-state  density mus t  equal  that  of the reservoir. 

The  assumpt ion  a < 1/2 was crucial for our  p roof  of this fact, which is 
no longer true if a > 1/2. In  tha t  case the bulk density is, independent ly  of 
~, given by p = 1/2. To  see this, we again assume all other  possible values 
for the bulk s teady-state  density and rule out  every other  scenario. Let  us 
start  by assuming a decay to a bulk  value p < 1/2(a');  since, supposedly,  we 
are in a s teady state, we can choose some point  i at  which 1/2 > Pi > P as 
a new initial point  of fixed density ~' = pi; e '  plays now the role of a < 1/2 
of the previously discussed si tuat ion (a), which, as we have shown, cannot  
be a s teady state. Another  possibility (b')  has e > p > 1/2. In  this case we 
recall tha t  near  N the density profile must  go f rom p to PN+I = 0 .  TO rule 
this out, we view the site N + 1 as a reservoir  of holes of fixed density 1. 
The  bulk with p > 1/2 corresponds  to hole density Ph = 1 - p  < 1/2; holes 
move  to the left, and if we exchange the roles of holes and  particles, this 
s i tuat ion becomes precisely the case (a') discussed above.  Hence (b')  is not  
possible either. 4 

We have just  shown that  for e > 1/2 no steady state is possible with 
either bulk density p < 1/2 or  p > 1/2; hence the only possibility left is 
Pbulk = 1/2. Tha t  is, for ~ > 1/2 the bulk density is that  one which suppor ts  
the max imal  current,  irrespective of ~, the density of the reservoir. This 
explains the t ransi t ion observed at e = 1/2, f rom a low-density phase with 
Pbulk " =  ~ to the maximal  current  phase, in which Pbulk = 1/2. 

Fo r  the sake of convenience we limited the previous discussion to the 
fl = 1 line. We now show that  the transi t ion survives when we move  off this 
line. Of  the cases discussed above,  (a), (b), and (a ' )  were ruled out  with no 

4 Note that the situation (c) of the c~ < 1/2 case, to which we promised to return, also requires 
that p goes from p> 1/2 to PN+I =0, and therefore is ruled out in the same way as (b'). 
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mention of the fact that fl = 1. In case (b') [and its equivalent, case (c)], 
we used a particle-hole symmetry to map the situation onto case (a'). Since 
there we had e > 1/2, the same argument goes through for holes if fl > 1/2; 
hence the same considerations give rise to the same phases as were 
obtained on the f l=  1 line. This completes the picture for the regions 
1/2 < fi ~< 1, and by particle-hole symmetry, for 1/2 < ~ ~< 1 as well. 

Note that in the low-density phase AH with Pbulk = ~ the slope of the 
density profile changes sign on the curve e = 1 - f t .  This can be understood 
as follows. The probability that a particles moves in the bulk (its average 
velocity) is v = 1 -  ~, while the probability that it moves at the boundary 
is /-)N = /~" If fl > 1 - e, then VN > V and the system becomes depleted near 
the boundary because the current j = pv  is conserved. This corresponds the 
negative slope of the profile in this regime. On the other hand, if fl < 1 - a, 
one has VN < V and particles pile up. This leads to a positive slope. In the 
high-density phase B u one finds the same result when compairing the 
velocity Vo = 1 -c~ at the origin with the bulk velocity v = ft. 

Next, we discuss the low-density phase A i, the high-density phase B~ 
in the region 0 < ~, fl < 1/2, and the transition between them. The bulk 
values in both phases and the slope of the profile can be derived in the 
same way as for the phases A II and BH. Note that in both phases one has 
Vo = 1 - ~ > fl = VN and therefore the slope is always positive (particles pile 
up). The current is given by 

j = min(c~(1 - ~), fl(1 - fl)) (5.1) 

In order to understand the shape of the profile in phases A~ and B I w e  

assume that it is built up by a superposition of profiles with a constant 
density c~ up to some point Xo, followed by constant density 1 - /? .  We call 
this sudden increase of the average density a domain wall 5 since it 
separates a region of high density 1 - f l  from a region of low density ~. The 
picture we have in mind for this scenario is that particles injected with rate 

at the origin move with constant average velocity 1 - ~ > 1/2 until they 
hit the domain wall, where they get stuck and continue to move only with 
velocity /~ < 1/2. This region of high density is caused by the blockage 
introduced through the connection to the reservoir of density 1 - /~  at the 
boundary. Such a scenario is plausible, since constant densities ~ < 1/2 
starting from the origin and 1 - /~  > 1/2 connected to the boundary are both 
stable situations of the system as discussed above. The probability p ( x )  oc 

e x p ( - x / ~ )  of finding this domain wall at position x is determined by the 
length scale ~ given by ~--1l=~-1  ~ffl [see (4.5) and (4.1l)]. If a < f l  

s We assume the width of this domain wall to be very small compared to the size of the 
system. 
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(low-density phase) then particles are absorbed with a higher probability 
than they are injected and the probability of finding the domain wall 
decreases exponentially with increasing distance r = N -  x from the bound- 
ary. On the other hand, in the case where e >  fi (high-density phase) the 
situation is reversed and p(x) decreases with increasing distance from 
the origin. Averaging over all such profiles with the weight p(x) leads to 
the observed exponential decay to the respective bulk value. This picture 
provides also a natural explanation of the linear profile on the transition 
line c~ = fl where the absorption and injection probabilities are equal. Here 

diverges and the probability of finding the domain wall at x is independ- 
ent of x. Averaging over step functions with an equal weight for every 
position of the step clearly gives a linear profile. It is worth noting that 
the mean-field calculation done in ref. 1 gives a correct description of the 
p h a s e s  A I and BI, but it singles out the constituent step function with the 
domain wall located in the center as the profile on the phase transition line. 
We should mention that this analysis, in particular the use of the domain 
wall picture for a description the two phases and the phase transition line, 
is based on our studies of a similar exclusion process with open boundary 
conditions but parallel dynamics. (9) For this model we found phases of 
type AI and Bx and a phase transition separating them as in the system 
with sequential dynamics studied here. A careful study of the equal-time 
correlation functions leads to our interpretation in terms of domain walls. 
As the transition lines to the phases An or B n are approached, this picture 
becomes invalid. 

Finally we briefly discuss the phase transition from the high-density 
phase B~ to the high-density phase BII. On approaching c~= 1/2 (but 
fl < 1/2) the length scale ~ diverges while ~ remains finite. As a result 
neither the bulk density nor the way in which the bulk density is 
approached depends on c~ (except for the trivial fact that the density at the 
origin and consequently the amplitude of the derivative of the profile 
depend on a). The decay to the bulk density Pbulk = 1 - f l  is determined by 
~ alone. Similarly the current does not depend on c~, being j = f l ( 1 - f l ) .  
A description of phase BII also in terms of constituent profiles is appealing 
at first sight, but it is less convincing since a constant profile of density 
a > 1/2 at the origin is not a stable situation. In order to get a more 
intuitive insight regarding this phase transition, we consider again the 
transition from the low-density phase A H to the maximal current phase on 
the line a = 1/2 but fl > 1/2. In the maximal current phase C the bulk den- 
sity and the way in which it is approached do not depend on e, whereas 
in the low-density phase An, e does determine the bulk density and how 
the profile decays to it. This is obviously due to the fact that if c~ > 1/2, the 
particles close to the origin block each other rather than flowing away. As 
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a result, the information corresponding to a change in the injection rate 
does not penetrate into the system. Clearly this description of the effect of 

increasing beyond 1/2 on the transition from the low-density phase A~ to 
the maximal current phase does not depend on the absorption at the 
boundary and is therefore also applicable to the transition from phase B I 
to phase BIt. 6 

We conclude that the phase transitions to the maximal current phase 
from the phase AII (or BII ) are of the same nature as the phase transition 
from Bx to B ,  (or from A I to All ). These transitions are caused by reaching 
the maximal transport capacity of the system at the origin (or boundary) 
and result in the divergence of the corresponding length scale determining 
the shape of the profile. Note that in our explanation it was necessary to 
take into account local correlations rather than only the current. This is 
the reason why these phase transitions are not found in the mean-field 
calculation. 

As opposed to these transitions, the one at ~ = fl that takes the system 
from the low-density phase A I to the high-density phase B~ is caused by the 
building up of domain walls. Such a wall is generated by the inhomogeneity 
forced on the system by being connected to two reservoirs of different 
densities. At the transition line the wall can be anywhere with equal prob- 
ability. The "coexistence" of low- and high-density regions is known to 
occur also in other systems with such an inhomogeneity. ~6'7'9'm) 

APPENDIX.  SOME USEFUL IDENTITIES 
FOR THE G-FUNCTION 

The function GMN, K(X) was defined in Eq. (2.13) as 
M--1 

GMN, K(X) = ~, bu, K(r ) X r (UP 1) 
r=0  

with 

(A.1) 

( K -  2 + r ) _ ( K - 2  +r)  
bN'x(r)= \ K - 2  (A.2) 

Furthermore, we defined bo, l(0 ) = G~, o = G~o.~ = 1. Using the symmetries of 
the coefficients bu, x(r), it is easy to prove the following recursion relations: 

, , , - 1  XGN, K+I(X) (2~<K~<N+ 1) 
N -- N N--1 GN, K(X)--GN, K_I(X)-k-XGN_I,K(X) (2 ~ / ~  N-k- 1) (A.3)  

g _ g xGMN, Tv~(X) (N~>2) G N, N(X) -- G N- 1,N--1(x) -[- 

6 AS a result of the particle-hole symmetry of the problem, the discussion of the transition 
from the low-density phase A~ to the low-density phase An proceeds along analogous lines. 
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One also finds 

GN, N(X) N U + l  N + I  GN, N (X)= ( N ~  = GN, N+ l ( X )  = GN, N+ l ( X )  1 ) 

0 __ M GN, K(X ) -- GN, N+ 2(X)  = 0 ( A . 4 )  

1 M GN, r(X ) = G~v,l(x ) = 1 (K, M <~N + 1) 

Equations (A.3) and (A.4) are necessary to prove that the function 
YN, K(e, fi) and XP, K(e, fl) satisfy the recursion relations and initial condi- 
tions (2.9)-(2.12). 

G~,,r(x) can be expressed in terms of incomplete fl functions: 

(1 - x) K-1 G~,,l((X)= I i_ x ( K -  1, M) 

_ ( x &  N-r+2 
\ l - x J  I , _ x ( N + I , M - N + K - 2 )  (A.5) 

[This is a direct consequence of the definition of Ix(P, Q).] From this 
expression one obtains 

(1 - x )  u+l G~,K(X)_ :~'M'~N+luM I,M--N+K-- 1(1 --X) 

= (1 --x)N--K+2--xN--K+2 ( A . 6 )  

and by setting M = N and M = N + 1, 

N + 2  
GN+I,K+I(x) GN, K (x) = ( l - x )  N + I  (2~<K~<N+ 1) (A.7) 

From this relation one can see that relations (A.3) are consistent for 
M = N = K .  

In the expression (3.3) for the density profile only the function GLL(X) 
appears. From Eq. (A.7) one finds 

G ~ , L ( x ) = ( l _ x  ) t+l  1 (A.8) G L + 1,L+ 1 ( x )  "{- CL XL + 

with 

(2L)! 
CL = -bL, L(L + 1)=L! (L+ 1)! (A.9) 

Defining FL(x) = x ( -L -  1)G~,L(X), one gets 

I - - X  L 1 

FL(X) = {X(1 --X)] L + I -  ~ 
k = 0  

ck[x(1 - x ) ]  k-L (A.IO) 
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Now we can reexpress FL(x) for x # 1/2 in terms of a hypergeometric 
function: 

F L ( x )  = 
(1 - -  2 x )  O ( 1  - 2 x )  

[ x ( 1 - x ) ]  L+' 

cL ( 3 - 4 x ( 1  - x)'~ 
-t ( 1 - ~ x ) 2 F  1 , ~ ; L + 2 ;  (-i-----2~ / 

= F~)(x)  + F ~2)(x) (A. 11 ) 

Here O(z) is the step function 

O ( z ) = { ~  z<0Z>0 (A.12) 

For large L the hypergeometric function F(1, 3; L + 2; z) reduces to 

F(1, 3. ~ , L + 2 ; z ) =  1 + O(L -1) (A.13) 

Special exact values of FL(x) are 

and 

2 4 z 
[1 + O(L-~) ]  (A.14) L1/2 

4 L 

FL(1) = CL (2rC)1/2 L3/2 [1 + O(L-~) ]  (A.15) 

Note Added. After completion of this work we received a preprint 
by B. Derrida, M.R.  Evans, V. Hakim, and V. Pasquier, who solved the 
same problem by a different method. 
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